Objects in
the Mist

3 701k The Design
M I of a Non-
Mist Traditional
Smalltalk

Martin McClure

What i1s Mist?

(the very brief edition)

What i1s a VM?

What i1s a VM?

Simulation of a machine

What i1s a VM?

eSimulation of a machine
eCannot break out of VM

Smalltalk VM

elnstruction set
*Memory Model
Primitive Methods

Photo by PeterEastern at en.wikipedia i

Status

(overview)

What i1s Mist?

(the detailed edition)

Values

Self-sufficiency
*Simplicity
*Consistency

*Speed

Self-
Sufficiency

There 1s no
“l” i

“Team”

There is no
“C” in
“Smalltalk”

Executable
Image

Minimize
Dependencies

Maximize
Interoperability

Values

Self-sufficiency
*Simplicity
*Consistency

*Speed

Simplicity

Everything should
be made as simple
as possible,
but no simpler

Consistency

Speed

Values

Self-sufficiency
*Simplicity
*Consistency

*Speed

Strategies

*Spend memory freely
Start simple

*Broad solutions

*Go for 80/20

Spend
Memory
Freely

Start Simple

Broad
Solutions

Go For
80/20

Concrete
Examples

Memory
Management

TheObjectManager

class: 64

oh,-mmnag:—I "_uf ' Zsf ' ;1.; ’

ﬁ.,

<‘
2
5
&
=

-

$
&

S oo
.
AN AN

.

-

3
g
g
%
%
s
g
<
g
%
<
.
%
%
s
g
g
%
%
s
g
<
g
%
%
s
g

b

B

2

'class: FreeSpﬂ

Object Allocation

Behavior
basicNew
“self basicNew: O.

basicNew: numIndexedInstvars

| physicalSize newInstance |
physicalSize :=

self instancePhysicalSize:

numIndexedInstvars.

newInstance :=

TheObjectManager

getFreeObjectOfSize: physicalSize.

newInstance initializeAsInstanceOf: self.
“newInstance.

Object Allocation

ObjectManager
getFreeObjectOfSize: physicalSize
| freeoObject |
allocationCount increment.
freeObject :=
freeHeads
at: physicalSize
ifAbsent: [“self
allocatelargeObjectOfSize: physicalSize].
freeObject == EmptyQueue
ifTrue: [self allocateObjectOfSize: physicalSize
freeObject := FreeHeads at: physicalSize].
freeHeads at: physicalSize put: freeObject nextObject.
~freeObject.

Garbage Collection

Object
gcMark
isGcMarked
ifFalse: [isGcMarked := true.
self allReferencesDo:
[:each | each gcMark]]
gcSweep
isGcMarked
ifTrue: [isGcMarked := false]
ifFalse: [|size|
size := self physicalSize.
class := FreeSpace.
TheObjectManager

add: self toFreeListForSize: size]

Garbage Collection

FreeSpace
gcMark
"do nothing"”

gcSweep
"do nothing"

TheObjectManager

class: 64

oh,-mmnag:—I "_uf ' Zsf ' ;1.; ’

ﬁ.,

<‘
2
5
&
=

-

$
&

S oo
.
AN AN

.

-

3
g
g
%
%
s
g
<
g
%
<
.
%
%
s
g
g
%
%
s
g
<
g
%
%
s
g

b

B

2

'class: FreeSpﬂ

Garbage Collection

ObjectManager
add: aFreeSpace ToFreeListForSize: size

| qHead |
qHead := freeHeads at: size ifAbsent:

[*self munmap: aFreeSpace ofSize: size].
anObject nextObject: gHead.
freeHeads at: size put: anObject.

Method
Lookup

Message Send 1

<move arguments to registers and stack>
mov rll, rdi
and rll, 1
jz NotSmalliInt
call <Constant, offset to method>
jmp Continue
NotSmallInt
mov rll, [rdi]
mov rax, <Constant, address of expected class>
cmp rax, rll
jnz CacheMiss
call <Constant, offset to method>
jmp Continue
CacheMiss
<push message send receiver and register arguments>
mov rdi, <constant address of selector-specific
method dictionary>

Message Send 2

mov rax, <Constant, address of expected class>
cmp rax, rll
jnz CacheMiss
call <Constant, offset to method>
jmp Continue
CacheMiss
<push message send receiver and register arguments>
mov rdi, <constant address of selector-specific
method dictionary>
lea rsi, [rip - n] <addr of const above>
add rsi, rsi
inc rsi
mov rdx, rll
call <Constant, address of
MethodDictionary>>cacheMissAt:actualBehavior:>
<pop message send receiver and register arguments>
add rax, Oxnn <offset to start of machine code
within method>

BT Y aee el

Message Send 3

jnz CacheMiss
call <Constant, offset to method>
jmp Continue
CacheMiss
<push message send receiver and register arguments>
mov rdi, <constant address of selector-specific
method dictionary>
lea rsi, [rip - n] <addr of const above>
add rsi, rsi
inc rsi
mov rdx, rll
call <Constant, address of
MethodDictionary>>cacheMissAt:actualBehavior:>
<pop message send receiver and register arguments>
add rax, Oxnn <offset to start of machine code
within method>
call rax
Continue

Loops
and
Conditionals

Conditionals

True
ifTrue: aBlock
~ aBlock value.

False
ifTrue: aBlock
~ nil.

Loops

Loops

increment do: aBlock
[self error: ...].

SmallInteger
to: limit by:
increment = 0 ifTrue:
increment > 0
ifTrue: [self <= limit ifTrue:
[self to: limit
byPositive:
do: aBlock]]
[self >= limit ifTrue:

increment

ifFalse:
[self to: limit

byNegative:

do: aBlock]].

increment

“nil.

Loops

SmallInteger
to: limit byPositive: increment do: aBlock

| nextiIndex |

aBlock value: self.

nextIndex := self + increment.

~ nextIndex > limit

ifFalse: [nextIndex
to: limit
byPositive: increment

do: aBlock].

Tail Call Elimination

CacheMiss
<push message send receiver and register arguments>
mov rdi, <constant address of selector-specific
method dictionary>
lea rsi, [rip - n] <addr of const above>
add rsi, rsi
inc rsi
mov rdx, rll
call <Constant, address of
MethodDictionary>>cacheMissAt:actualBehavior:>
<pop message send receiver and register arguments>
add rax, Oxnn <offset to start of machine code
within method>
call rax
Continue
add rsp, 16rl0
ret

Tail Call Elimination

CacheMiss
<push message send receiver and register arguments>
mov rdi, <constant address of selector-specific
method dictionary>
lea rsi, [rip - n] <addr of const above>
add rsi, rsi
inc rsi
mov rdx, rll
call <Constant, address of
MethodDictionary>>cacheMissAt:actualBehavior:>
<pop message send receiver and register arguments>
add rax, Oxnn <offset to start of machine code
within method>
add rsp, 16rl0
jmp rax
<no Continue>

Loop with Tail Call E.

SmallInteger
to: limit byPositive: increment do: aBlock
| nextIndex |

aBlock value: self.
nextIndex := self + increment.

~ nextIndex > limit
ifFalse: [nextIndex
to: limit
byPositive: increment
do: aBlock].

Loop with Tail Call E.

False
ifFalse: aBlock
~ aBlock value.

<this block's closure subclass>
value
~ nextIndex
to: limit
byPositive: increment
do: aBlock.

Differences
from

Smalltalk

Massively
Single-
threaded

Streams

Stream Literals

"Name: [name] Address: [address]”

Privacy

Stateful Traits

IdentityHash

Instance Variables:

identityHash
Methods:
identityHash
identityhash == nil
ifTrue: [identityHash := Random integer].

~identityHash

Package-private
Methods

Why?

Status

(detailed)

Objects in
the Mist

3 701k The Design
M of a Non-
Mist Traditional
Smalltalk

martin(@mist-project.org

